Ãîëîâíà
Àêñ³îëîã³ÿ / Àíàë³òè÷íà ô³ëîñîô³ÿ / Àíòè÷íà ô³ëîñîô³ÿ / Àíòîëîã³ÿ / Àíòðîïîëîã³ÿ / ²ñòîð³ÿ ô³ëîñîô³¿ / ²ñòîð³ÿ ô³ëîñîô³¿ / Ëîã³êà / Ìåòàô³çèêà / Ñâ³òîâà ô³ëîñîô³ÿ / Ïåðøîäæåðåëà ç ô³ëîñîô³¿ / Ïðîáëåìè ô³ëîñîô³¿ / Ñó÷àñíà ô³ëîñîô³ÿ / Ñîö³àëüíà ô³ëîñîô³ÿ / Ñåðåäíüîâ³÷íà ô³ëîñîô³ÿ / Òåëåîëîã³ÿ / Òåîð³ÿ åâîëþö³¿ / Ô³ëîñîô³ÿ (ï³äðó÷íèê) / Ô³ëîñîô³ÿ ìèñòåöòâà / Ô³ëîñîô³ÿ ³ñòî𳿠/ Ô³ëîñîô³ÿ ê³íî / Ô³ëîñîô³ÿ íàóêè / Ô³ëîñîô³ÿ ïîë³òèêè / Ô³ëîñîô³ÿ ð³çíèõ êðà¿í ³ ÷àñ³â / Ô³ëîñîô³ÿ ñàìîîðãàí³çàö³¿ / Ô³ëîñîôè / Ôóíäàìåíòàëüíà ô³ëîñîô³ÿ / Õðåñòîìàò³¿ ç ô³ëîñîô³¿ / Åçîòåðèêà
ÃîëîâíàÔ³ëîñîô³ÿÔ³ëîñîô³ÿ íàóêè → 
« Ïîïåðåäíÿ
Öåëèùåâ  . Â.. Ô³ëîñîô³ÿ ìàòåìàòèêè. 4.1. - Íîâîñèá³ðñüê: Íàóêà,. -212 Ñ., 2002 - ïåðåéòè äî çì³ñòó ï³äðó÷íèêà

˲ÒÅÐÀÒÓÐÀ

Áëåêáåðí Ñ. Ïðîôåñîð ÷îãî çàâãîäíî II Ãóìàí³òàðí³ íàóêè â Ñèá³ðó. - 2002. - ¹ 3.

³òãåíøòåéí JI. Ô³ëîñîôñüê³ äîñë³äæåííÿ. 201 / / Ô³ëîñîôñüê³ ðîáîòè. - Ì.: Ãíîçèñ, 1994.

Ãåäåëü Ê. ðàññåëîâñêîãî ìàòåìàòè÷íà ëîã³êà II Ðàññåë Á. Âââåäåíèå â ìàòåìàòè÷íó ô³ëîñîô³þ. - Ì.: Ãíîçèñ, 1996.

Êàðíàï Ð. Çíà÷åííÿ ³ íåîáõ³äí³ñòü. - Ì.: Ñâ³ò, 1959.

Êëàéí Ì. Ìàòåìàòèêà: âòðàòà âèçíà÷åíîñò³. - Ì.: Ñâ³ò, 1984.

Ïëàòîí. Äåðæàâà. Ñî÷.: Â 3 ò. - Ì.: Äóìêà, 1971. - Ò. 3.

Ïðîáëåìíî-îð³ºíòîâàíèé ï³äõ³ä äî íàóêè / ³äï. ðåä. Â.Â. Öåëèùåâ. - Íîâîñèá³ðñüê: Íàóêà, 2001.

Ðàññåë Á. Ââåäåííÿ â ìàòåìàòè÷íó ô³ëîñîô³þ / Ïåð. Â.Â. Öåë³ùåâ-âà. - Ì.: Ãíîçèñ, 1996.

Ðàññåë Á. ²ñòîð³ÿ çàõ³äíî¿ ô³ëîñîô³¿. - Íîâîñèá³ðñüê: Èçä-âî ÍÃÓ, 1997.

Ðàññåë Á. Ìóäð³ñòü Çàõîäó. - Ì.: Ðåñïóáë³êà, 1998.

Ðàññåë Á. Ïðîáëåìè ô³ëîñîô³¿ / Ïåð. Â.Â. Öåëèùåâà. - Íîâîñèá³ðñüê: Íàóêà, 2001.

Ôðåíêåëü À., Áàð-Õèëëåë ². ϳäñòàâè òåî𳿠ìíîæèí. - Ì.: Ñâ³ò, 1966.

Õàê³íã ß. Óÿâëåííÿ ³ âòðó÷àííÿ. - Ì.: Ãíîçèñ, 1998.

Õàî Âàí. Ïðîöåñ ³ ³ñíóâàííÿ ² Ìàòåìàòè÷íà ëîã³êà òà ¿¿ çàñòîñóâàííÿ. - Ì., 1965.

Öåëèùåâ Â.Â. Ëîã³÷íà ³ñòèíà ³ åìï³ðèçì. - Íîâîñèá³ðñüê: Íàóêà, 1974.

Öåëèùåâ Â.Â. Ëîã³êà ³ñíóâàííÿ. - Íîâîñèá³ðñüê: Íàóêà, 1975.

Öåëèùåâ Â.Â. Ìîâà äðóãîãî ïîðÿäêó ³ ïðîáëåìíî-îð³ºíòîâàíèé ï³äõ³ä äî ï³äñòàâ ìàòåìàòèêè - 1 / / Ô³ëîñîô³ÿ íàóêè. - 2001. - ¹ 1 (9). -Ñ. 76-90.

Öåëèùåâ Â.Â. Ìàòåìàòèêà ³ ô³ëîñîô³ÿ: òåõí³÷í³ äåòàë³ òà ô³ëîñîôñüê³ ³íòåðïðåòàö³¿ II Ô³ëîñîô³ÿ íàóêè. - 2002. - ¹ 2 (13). - Ñ. 27-43.

Öåëèùåâ Â.Â. Ïîøóêè íîâî¿ ô³ëîñîô³¿ ìàòåìàòèêè II Ô³ëîñîô³ÿ íàóêè. - 2002. - ¹ 3 (11). - Ñ. 135-147. Öåëèùåâ Â.Â., Áåçñîíîâ À.Â. Äâ³ ³íòåðïðåòàö³¿ ëîã³÷íèõ ñèñòåì. -

Íîâîñèá³ðñüê: Íàóêà, 1979. Öåëèùåâ Â.Â. Ïåòðîâ Â.Â. Ô³ëîñîôñüê³ ïðîáëåìè ëîã³êè. - Ì.: Âèùà. øê., 1982.

Aczel P. Non-Well-Founded Sets. - Stanford, 1988.

Anderson D. What Is the Model-theoretic Argument? II J. Philosophy. -

1993. - Vol. 90, N 6. - P. 312-313. Anderson F. Some Correction to Godel's Ontological Proof / / Faith and

Philosophy. - 1990. - Vol. 7, N 3, July. Azzouni J. Metaphysical Myths, Mathematical Practice. - Cambridge:

University Press, 1994. Balaguer M. Platonism and Antiplatonism in Mathematics. - Oxford:

University Press, 1998. Barrow J. Pi in the Sky. - Oxford: Clarendon Press, 1992. Bays T. On Putnam and His Models II J. Philosophy. - 2001. - Vol. 98, N7.

Benacerraf P. What Numbers Could Not Be II Philos. Rev. - 1965. - Vol. 74, N 1.

Benacerraf P. Mathematical Truth II J. Philosophy. - 1973.

Benacerraf P. Skolem and Sceptic II Proceedings of Aristotelian Society. -

1985. - Suppl. vol. 59. Benacerraf P. What Mathematical Truth Could not Be II Philosophy of

Mathematics Today. / Ed. M. Schirn. - Oxford, 1998. Bernays P. Platonism in Mathematics II Philosophy of Mathematics. / Ed.

P. Benacerraf, H. Putnam. - Englewood Cliffs: Prentice-Hall, 1964. Beth E. Mathematical Thought. - Dordrecht: Reidel, 1965. Bishop E. Foundations of Constructive Analysis. -N.Y.: McGraw-Hill, 1967. Boolos G. The Iterative Conception of Set II J. Philosophy. - 1971. - Vol. 68.

Boolos G. To Be Is to Be a Value of Variable II J. Philosophy. - 1975. - Vol.

72. - P. 509-527. Boolos G. On Second-Order Logic II J. Philosophy. - 1984. - Vol. 81. - P. 54-72.

Boolos G. The consistency of Frege's Foundations of Arithmetic II On Being

and Saying / Ed. J. Thompson. - Cambridge: University Press, 1987. Bostock D. On Motivating Higher-Order Logic ² Philosophical Logic. / Ed.

T. Smiley. - Oxford: University Press, 1998. Cantor G. Gesammelte Abhandlungen / Ed. A. Fraenkel and E. Zermelo. - Berlin, 1932.

Cantor G. Contributions to the Founding of the Theory of Transfinite

Numbers. - N.Y.: Open Court, 1955. Chihara Ch. Constructibility and Mathematical Existence. - Oxford:

University Press, 1990. Cohen P. Set Theory and the Continuum Hypothesis. - Benjamin; Massachusetts, 1966.

Colyvan Ì. The Indispensability of Mathematics. - Oxford: University Press, 2001.

Corcoran J. Gaps between Logical Theory and Mathematical practice II The Methodological Unity of Science / Ed.

M. Bunge. - Dordrecht: D. Reidel. - P. 23-50.

Curry H. Outlines of a Formalist Philosophy of Mathematics. - Amsterdam, 1970.

Dauben J. George Cantor. - Princeton: University Press, 1979.

Davis Ph., Hersh R. The Mathematical Experience. - Penguin, 1983.

Douven I. Putnam's Model-Theoretic Argument Reconstrued II J. Philosophy. - 1999. - Vol. 96, N 9. -P. 483.

Field H. Science without Numbers. - Princeton: University Press, 1980.

Field H. Is Mathematical Knowledge Just Logical Knowledge? II Philos. Rev. - 1984. - Vol. 93, N 4.

Field H. On Conservativeness and Incompleteness II J. Philosophy. - 1985. - Vol. 82. - P. 239-60.

Fraenkel A., Bar-Hillel Y., Levi A. Foundations of Set Theory. - 2-nd ed. - Amsterdam, 1973.

Fuller S. Thomas Kuhn: A Philosophical History for Our Times. - Chicago: University Press, 2001.

George A. Skolem and Lewenheim - Skolem Theorem: A Case Study of Philosophical Significance of mathematical Results II History and Philosophy of Logic. - 1985. - N 6.

Godel K. What is Cantor's Continuum Problem? II Philosophy of Mathematics / Ed. P. Benacerraf, H. Putnam. - Englewood Cliffs: Prentice-Hall, 1964.

Goldman A.I. A Causal Theory of Knowledge II Essays on Knowledge and Justification / Ed. G. Pappas, M. Swain. - Cornell: University Press, 1978.

Hacking I. The Social Construction of What? - Harvard: University Press, 1999.

Hacking J. What Mathematics Has Done to Some and Only Some Philosophers / / Mathematics and Necessity / Ed. T. Smiley. -Oxford: University Press, 2000.

Hale B. Abstract Objects. - Basil: Blackwell, 1987.

Hale B. and Wright C. Putnam's Model-Theoretic Argument II Companion to Philosophy of Language. - Blackwell, 1997.

Halett M. Cantorain Set Theory and Limitation of Size. - Oxford: University Press, 1984. - P. 32.

Hart W.D. Review of Mathematical Knowledge by M. Steiner. - Ithaka: Cornell University Press, 1975 / / J. Philosophy. - 1977. - Vol. 74, N 2, febr.

Hays J. The battle of the Frog and the Mouse (from the Fables of Aleph) II Mathematical Intelligencer. - 1984. - Vol. 6.

Hersh R. Mathematics has a Front and a Back II Synthese 88, 1991.

Hersh R. A Fresh Winds in the Philosophy of Mathematics II Amer. Math. Monthly. - 1995. - Aug.-Sept. - P. 590-591.

Hersh R. What is Mathematics, Really? - Oxford: University Press, 1997.

Higginbotham J. On High-Order Logic and Natural language II Philosophical Logic / Ed. T. Smiley. - Oxford: University Press, 1998.

Hintikka J. Logic, Language Games and Information. - Oxford: Clarendon Press, 1973.

Hintikka Ja. The Principles of Mathematics Revisited. - Cambridge: University Press, 1996.

Hintikka Ja. Lingua Universalis vs Calculus Ratiocinator. - Dordrecht: Kluwer Academic Publishers, 1997.

Jane I. A Critical Appraisal of Second-Order Logic ² History and Philosophy of Logic. - 1993. - Vol. 14.

Kitcher Ph. The Nature of Mathematical Knowledge. - Oxford: University Press, 1983.

Klenk V. Intended Models and Lewenheim-Skolem Theorem II J. Philos. Logic. - 1976. - N 5. - P. 475-489.

Korner S. The philosophy of Mathematics. - L.: Hutchinson, 1960.

Kreisel G. Der unheivolle Einbruch der Logic in die Mathematik II Acta Philosophica Fennica. - Vol. 28, N 1-3.

Kripke S. Wittgenstein on Rules and Private Language. - N.Y.: Blackwell, 1982.

Lavine Sh. Understanding the Infinite. - Cambridge: Harvard University Press, 1994.

Maddy P. Believing Axioms. I / / J. Symbolic Logic. - 1988. - Vol. 53.

Maddy P. Believing the Axioms. II / / J. Symbolic Logic. - 1988. - Vol. 53, N 3. - P. 736-764.

Maddy P. Mathematical Realism II Midwest Studies in Philosophy. - 1988. - Vol. 12. - P. 275.

Maddy P. Realism in Mathematics. - Oxford: University Press, 1990.

Maddy P. Philosophy of Mathematics: Prospects for the 1990s II Synthese 88, - 1991. - P. 155-164.

Maddy P. Naturalism in Mathematics. - Oxford: University Press, 1997.

Martin D. Hilbert 's First Problem: The Continuum Hypothesis II Proceedings of Symposia in Pure mathematics. - 1976. - Vol. 28.

Martin R. Intension and Decision. - N.Y., 1964.

Moore G. Beyond First-Order Logic: The Historical Interplay between Mathematical Logic and Axiomatic Set Theory II History and Philosophy of Logic.

- 1980,-Vol. 1.

Moore G. Zermelo's Axiom of Choice. - Springer, 1982.

Moschovakis Y. Descriptive Set Theory. - Amsterdam: North Holland, 1980.

Mostowski A. Thirty Years of Foundational Studies / / Acta Philosophica Fennica, Fasc. XVII. - Helsinki, 1965.

Passmore J. Recent Philosophers. - N.Y.: Open Court, 1991.

Penrose R. The Emperor's New Mind. - L.: Vintage, 1990.

Philosophy of Mathematics / Eds. Benacerraf P., Putnam H. - Englewood Cliffs: Prentice-Hall, 1964.

Philosophy of Mathematics Today I Ed. M. Schirn. - Oxford, 1998.

Putnam H. Review of the Concept of a Person II Philosophical Papers. Mind, Language and Reality. - Cambridge: University Press, 1975. - Vol. 2.

Putnam H. Models and Reality ² J. Symbolic Logic. - 1980. - Vol. 45, N 3.

Putnam H. Reason, Truth, and History. - Cambridge, 1982.

Quine W.V.O. Set Theory and Its Logic. - Harvard: University Press, 1963.

Quine W. V.O. Word and Object. - Cambridge: University Press, 1964.

Quine W.V.O. Epistemology Naturalized II Ontological Relativity and Other Essays. - Harvard: University Press, 1969.

Quine W.V.O. Philosophy of Logic. - Englewood Cliffs: Prentice-Hall, 1970.

Reed S. Thinking about logic. - Oxford: University Press, 1994.

Resnik M. Mathematics as a Science of Patterns. - Oxford: Clarendon Press, 1997.

Rota G.-C. Mathematics and Philosophy: The Story of Misunderstanding ² Review of Metaphysics. - 1990. - Vol. 44, N 174, Dec.

Rota G.-C. The Pernicious Influence of Mathematics upon Philosophy II Synthese 88, - 1991, - P. 165-178.

Rucker R. Infinity and the Mind. - Bantam Books, 1983.

Russell B. Principles of Mathematics. - N.Y., 1903.

Russell B. Mathematics and Metaphysicians II Mysticism and Logic, 1957.

Russell B. On Some Difficulties in the Theory of Transfinite Numbers and Order Types II Essays in Analysis / Ed. D. Lackey.-N.Y., 1974.-P. 153.

Scott D. Foreword to J. Bell, Bolean-Valued Models and Independence Proofs in Set Theory. - Oxford: University Press, 1977. - P. xii.

Shapiro S. Mathematics and Reality II Philosophy of Science. - 1983. - Vol. 50. - P. 523-548.

Shapiro S. Second-order Logic, Foundations, and Rules II J. Philosophy. - 1990.

Shapiro S. Foundations without Foundationalism: A Case for Second-order Logic. - Oxford: University Press, 1991.

Shapiro S. Mathematics and Philosophy of Mathematics II Phiiosophia Mathematica. - 1994. - Vol. 2, N 3.

Shapiro S. Philosophy of Mathematics. Structure and Ontology. - Oxford: University Press, 1997.

Skolem T. Einige Bemerkungen zur aximatischen Begrundung der Mengelehre / / From Frege to Godel / Ed. van Heijenoort. - Cambridge, 1967.

Skolem T. Some Remarks on Axiomatized Set Theory ² From Frege to Godel / Heijenoort J., van. - Harvard: University Press, 1967.

Skolem T. Sur la Portee du Theoreme de Lewenheim - Skolem II Skolem T. Selected Works in Logic / Ed. E.J. Fenstad. - Universitetsforlaget, 1970. - P. 468.

Sluga H. Frege Against Booleans II Notre Dame Journal of Formal Logic. - 1987. - Vol. 28. - P. 80-98. Takeuti G. Two Applications of Logic to Mathematics. - Princeton: University Press, 1977.

 Tappenden J. Recent Works in Philosophy of Mathematics II J. Philosophy. - 

 2001. - Vol. 97. - P. 488-497. Tarski A. Remarks on Skolem II Skolem T. Selected Works in Logic. - Oslo, 1970. > 

 Tiles M. The Philosophy of Set Theory: An Historical Introduction to Cantorb Paradise. - Basil: Blackwell, 1989. '> 

 Velleman D. Letter of 28 March 1991. Internet FOM. Wang Hao. From Mathematics to Philosophy. - L., 1974. - s 

 Whitehead A.N. Principia Mathematica. - Cambridge: University Press, 1910. 1 

 Wright C. Frege's Conception of Numbers as Objects. - Aberdeen: University Press, 1983. t 

 Wright C. Skolem and Sceptic II Proceedings of Aristotelian Society. - 

 1985. -Suppl. vol. 59. Zermelo E. Investigations in the Foundations of Set Theory. 1908 / / Front Frege to Godel / Ed. van Heijenort J. - Harvard: "University Press, 1967: ' 

« Ïîïåðåäíÿ
= Ïåðåéòè äî çì³ñòó ï³äðó÷íèêà =
 ²íôîðìàö³ÿ, ðåëåâàíòíà "˲ÒÅÐÀÒÓÐÀ"
  1. ˳òåðàòóðà
      ë³òåðàòóðè. Íà ïî÷àòêó ñòîë³òòÿ îñíîâíîþ òåíäåíö³ºþ â ë³òåðàòóð³ º çì³íà êëàñèöèçìó ³ ñåíòèìåíòàë³çìó íîâèì òå÷³ºþ - ðîìàíòèçìîì, âîñïåâàþùèì â³äõ³ä â³ä ïîâñÿêäåííîñò³, ïðàãíåííÿ äî ï³äíåñåíîãî ³äåàëó, éîãî ïîøóê â ìèíóëîìó. Öåé íàïðÿìîê ïðîÿâëÿºòüñÿ ó òâîðàõ Â.À. Æóêîâñüêîãî, Ê.Ô. Ðè뺺âà, ðàíí³õ òâîðàõ À.Ñ. Ïóøê³íà ³ Ì.ÊÕ Ëåðìîíòîâà. Ó äðóã³é ÷âåðò³ XIX â. â ðîñ³éñüê³é
  2. Âàðëàìîâà À.ß., Àãàðêîâ ª.Â. . Ñàì çðîáè âèá³ð íàâ÷àëüíî¿ ë³òåðàòóðè ç ïåäàãîã³êè, ïðèðîäîêîðèñòóâàííÿ òà êîíöåïö³¿ ñó÷àñíîãî ïðèðîäîçíàâñòâà: Íàâ÷àëüíî-ìåòîäè÷íèé ïîñ³áíèê. - Âîëãîãðàä: Âèä-âî ÂîëÄÓ. - 80 ñ., 2004
      ë³òåðàòóð³ ð³çíèõ àâòîð³â ç ïåäàãîã³êè, ïðèðîäîêîðèñòóâàííÿ òà êîíöåïö³¿ ñó÷àñíîãî
  3. Ðåêîìåíäîâàíà ë³òåðàòóðà 1.
      ë³òåðàòóðà / / Ô³ëîñîôñüê³ íàóêè. -1990. - ¹ 2. 6. Ìàìàðäàøâ³ë³ Ì.Ê. Ïðîáëåìà ñâ³äîìîñò³ ³ ô³ëîñîôñüêå ïîêëèêàííÿ / / Ïèòàííÿ ô³ëîñîô³¿. -1968. - ¹ 8. 7. Ëîñºâ À.Ô. Äåðçàííÿ äóõó. -Ì., 1988. 8. Ðàøêîâñêèé Å.Á., Âë. Ñîëîâéîâ ïðî äîë³ òà ñåíñ³ ô³ëîñîô³¿ / / Ïèòàííÿ ô³ëîñîô³¿. -1988.
  4. Äæåðåëà òà ë³òåðàòóðà
      ë³òåðàòóðà. - 1990. - ¹ 1. «Ç íåùàäíîþ ð³øó÷³ñòþ ...»: Ëèñò Â.². Ëåí³íà ò. Ìîëîòîâó äëÿ ÷ëåí³â Ïîë³òáþðî / / Ñï³âðîçìîâíèê. - 1990. - ¹
  5. Ãîñïîäàðñüêèé ³ ãðîìàäñüêèé ëàä Ñòàðîäàâíüî¿ ²í䳿 ïî «Çàêîíàì Ìàíó» ³ «Àðòõàøàñòðå».
      ë³òåðàòóðè âèäàâíèöòâà «Íàóêà». 1985. Ãîë. 12, 13, 14. Áåøåì À. ×óäî, ÿêèì áóëà ²íä³ÿ. Ì.: Ãîëîâíà ðåäàêö³ÿ ñõ³äíî¿ ë³òåðàòóðè âèäàâíèöòâà «Íàóêà». 1977. Ç ãëàâ 4 ³ 5. ²ñòîð³ÿ Ñòàðîäàâíüîãî Ñõîäó. / Ïîä ðåä. Â.². Êóçèùèíà. Ì., 1999. Ãîë. 28-33 (ñ. 337-340, 346-348). ²ñòîð³ÿ Ñõîäó. / Ïîä ðåä. Ð.Á.Ðèáàêîâà òà ³í Ì., 2000. Ò.1. Ãëàâà 22. ²ñòîð³ÿ Ñòàðîäàâíüîãî Ñõîäó. Òåêñòè òà äîêóìåíòè. / Ïîä ðåä.
  6.  Ðîçä³ë 3. Îñíîâíà ³ äîäàòêîâà ë³òåðàòóðà.
      ë³òåðàòóðà.
  7. 27. Íåâò³øíèé âèñíîâîê
      ë³òåðàòóðè âñå éäå ÿêíàéêðàùå. Ïðåêðàñí³øå ðåäóêö³éí³ ä³àãðàìè, ÿê³ ìîæíà çóñòð³òè â íàóêîâ³é ³ ìåòàíàó÷íîé ë³òåðàòóð³, â çíà÷í³é ì³ð³ îìàíëèâ³ ³ ââîäÿòü â îìàíó, îñê³ëüêè ñåðéîçíî âîíè í³êèì íå àíàë³çóâàëèñÿ. Çâåðíåìîñÿ òåïåð äî ³íøèõ, á³ëüø âèâ÷åíèì âèäàì ³íòåðòåîðåò³÷åñê³õ
  8. Êóëüòóðà Ñòàðîäàâíüîãî ªãèïòó.
      ë³òåðàòóðà. Îáðàçîòâîð÷å ìèñòåöòâî òà àðõ³òåêòóðà. Íàóêîâ³ çíàííÿ äðåâí³õ ºãèïòÿí. ˳òåðàòóðà ²ñòîð³ÿ Ñòàðîäàâíüîãî Ñõîäó. / Ïîä ðåä. Â.².Êóç³ù³íà. Ì., 1999. Ãîë. 7. ²ñòîð³ÿ Ñõîäó. Ò.1. Ì., 2000. Ãîë. 11 (ñ. 176-191). ²ñòîð³ÿ Ñòàðîäàâíüîãî Ñõîäó. ×àñòèíà 2. Ì., 1988 (ç ãîë. 5 ³ 7). ²ñòîð³ÿ ñòàðîäàâíüîãî ñâ³òó. Êí.1. Ðàííÿ ñòàðîâèíó. Ì., 1989. Ëåêö³ÿ 14: Ëàöèñ ². À. Êóëüòóðà ñòàðîäàâíüîãî ªãèïòó. Ñòàðîäàâí³
  9. Îðãàí³çàö³ÿ ïåðñüêî¿ äåðæàâè â ê³íö³ 6 - ïî÷àòêó 5 ñòîë³òü äî í.å.
      ë³òåðàòóðà: Äàíäàìàåâ Ì.À. Ïîë³òè÷íà ³ñòîð³ÿ Àõåìåíèäñêîé äåðæàâè. Ì., Äàíäàìàåâ Ì.À. ²ðàí ïðè ïåðøèõ Àõåìåí³äàõ (6 ñòîë³òòÿ äî í.å.). Ì., Âñåñâ³òíÿ ³ñòîð³ÿ. Ò.1. Ì.: Ãîñïîëèòèçäàò. 1956. Ïðîáëåìíî-ëîã³÷íå çàâäàííÿ: ñòâîðèòè õðîíîëîã³÷íó òàáëèöþ ñòàíîâëåííÿ äåðæàâè Àõåìåí³ä³â, ðîçïîä³ëèâøè ìàòåð³àë çà òðüîìà êîëîíêàì: «Äàòè», «Ïî䳿», «Çì³ñò». Äîïîâ³ä³:-Åêîíîì³÷íèé ³ ñîö³àëüíèé ðîçâèòîê
  10. Êóëüòóðà Ñòàðîäàâíüîãî Êèòàþ.
      ë³òåðàòóðà Ñòàðîäàâíüîãî Êèòàþ. ˳òåðàòóðà (îñíîâíà): Ñòàðîäàâí³ öèâ³ë³çàö³¿. / Ïîä ðåä. Ã.Ì.Áîíãàðä-Ëåâ³íà. Ì.: Äóìêà. 1989. Ãë.14. ²ñòîð³ÿ Ñõîäó. Ò.1. Ì., 2000. ²ñòîð³ÿ Ñòàðîäàâíüîãî Ñõîäó. / Ïîä ðåä. Â.². Êóçèùèíà. Ì., 1999. ²ñòîð³ÿ ñòàðîäàâíüîãî ñâ³òó. Êí.2. Ðîçêâ³ò äðåâí³õ òîâàðèñòâ. Ì., 1989. Ëåêö³ÿ 29: Ìàëÿâ³í Â.Â. ²äåîëîã³÷í³ òå÷³¿ â Êèòà¿ V - III ñò. äî í.å. Õðåñòîìàò³ÿ ç ³ñòî𳿠Ñòàðîäàâíüîãî Ñõîäó. Ì.:
  11. Çåìåëüí³ â³äíîñèíè ³ ñîö³àëüíà áîðüáàâ åëë³í³ñòè÷íîìó ñâ³ò³.
      ë³òåðàòóðà: Ëåâåê Ï. Åëë³í³ñòè÷íèé ñâ³ò. Ì., 1989. -Ñ. 63-75, 82-85. Òàðí Â. Åëë³í³ñòè÷íà öèâ³ë³çàö³ÿ. Ì., 1949. -Ñ. 174-191. Çåëüèí Ê.Ê., Òðîôèìîâà Ì.Ê. Ôîðìè çàëåæíîñò³ â Ñõ³äíîìó Ñåðåäçåìíîìîð'¿ â ïåð³îä åëë³í³çìó. Ì., 1969. Ïðîáëåìíî-ëîã³÷í³ çàâäàííÿ:-Ïîð³âíÿéòå ñòàíîâèùå åëë³í³ñòè÷íîãî ïîë³ñà ïîð³âíÿíî ç ãðåöüêèì ïîë³ñîì V â. äî í. å.. - Çàïîâí³òü õðîíîëîã³÷íó òàáëèöþ
  12. Äîäàòêîâà ë³òåðàòóðà: 1.
      Àëåêñàøèíà ². Ó÷èòåëü ³ íîâ³ îð³ºíòèðè îñâ³òè. - ÑÏá., 1997. 2. Àí³êåºâà Í.Ï., ³íí³êîâà Ã.Â., Ñìèðíîâ Ñ. À. Ðåæèñóðà ïåäàãîã³÷íî¿ âçàºìî䳿. - Íîâîñèá³ðñüê: ÍÄϲ,
  13. ˳òåðàòóðà
      ë³òåðàòóðè Äàâíüî¿ Ðóñ³. 12 ñòîë³òòÿ. Ì., 1980; 13 ñòîë³òòÿ. Ì, 1981; Ðîñ³éñüêå çàêîíîäàâñòâî 10-20 ñòîë³òü. Ì., 1984. Õðåñòîìàò³ÿ ç ³ñòî𳿠Ðîñ³¿. Ç íàéäàâí³øèõ ÷àñ³â äî 17 ñòîë³òòÿ. Ì, 1994. Õðåñòîìàò³ÿ ç ³ñòî𳿠ÑÐÑÐ ç íàéäàâí³øèõ ÷àñ³â äî ê³íöÿ 15 ñòîë³òòÿ. Ì., 1960. Áîðèñîâ Í.Ñ. Ðîñ³éñüê³ ïîëêîâîäö³ 13-16 ñòîë³òü. Ì., 1993. Âåëèê³ äóõîâí³ ïàñòèð³ Ðîñ³¿. ϳä ðåäàêö³ºþ ïðîô. À.Ô. Êèñåëüîâà. Ì, 1999. Ãóì³ëüîâ
© 2014-2022  ibib.ltd.ua