Ãîëîâíà |
« Ïîïåðåäíÿ | ||
˲ÒÅÐÀÒÓÐÀ |
||
Áëåêáåðí Ñ. Ïðîôåñîð ÷îãî çàâãîäíî II Ãóìàí³òàðí³ íàóêè â Ñèá³ðó. - 2002. - ¹ 3. ³òãåíøòåéí JI. Ô³ëîñîôñüê³ äîñë³äæåííÿ. 201 / / Ô³ëîñîôñüê³ ðîáîòè. - Ì.: Ãíîçèñ, 1994. Ãåäåëü Ê. ðàññåëîâñêîãî ìàòåìàòè÷íà ëîã³êà II Ðàññåë Á. Âââåäåíèå â ìàòåìàòè÷íó ô³ëîñîô³þ. - Ì.: Ãíîçèñ, 1996. Êàðíàï Ð. Çíà÷åííÿ ³ íåîáõ³äí³ñòü. - Ì.: Ñâ³ò, 1959. Êëàéí Ì. Ìàòåìàòèêà: âòðàòà âèçíà÷åíîñò³. - Ì.: Ñâ³ò, 1984. Ïëàòîí. Äåðæàâà. Ñî÷.:  3 ò. - Ì.: Äóìêà, 1971. - Ò. 3. Ïðîáëåìíî-îð³ºíòîâàíèé ï³äõ³ä äî íàóêè / ³äï. ðåä. Â.Â. Öåëèùåâ. - Íîâîñèá³ðñüê: Íàóêà, 2001. Ðàññåë Á. Ââåäåííÿ â ìàòåìàòè÷íó ô³ëîñîô³þ / Ïåð. Â.Â. Öåë³ùåâ-âà. - Ì.: Ãíîçèñ, 1996. Ðàññåë Á. ²ñòîð³ÿ çàõ³äíî¿ ô³ëîñîô³¿. - Íîâîñèá³ðñüê: Èçä-âî ÍÃÓ, 1997. Ðàññåë Á. Ìóäð³ñòü Çàõîäó. - Ì.: Ðåñïóáë³êà, 1998. Ðàññåë Á. Ïðîáëåìè ô³ëîñîô³¿ / Ïåð. Â.Â. Öåëèùåâà. - Íîâîñèá³ðñüê: Íàóêà, 2001. Ôðåíêåëü À., Áàð-Õèëëåë ². ϳäñòàâè òåî𳿠ìíîæèí. - Ì.: Ñâ³ò, 1966. Õàê³íã ß. Óÿâëåííÿ ³ âòðó÷àííÿ. - Ì.: Ãíîçèñ, 1998. Õàî Âàí. Ïðîöåñ ³ ³ñíóâàííÿ ² Ìàòåìàòè÷íà ëîã³êà òà ¿¿ çàñòîñóâàííÿ. - Ì., 1965. Öåëèùåâ Â.Â. Ëîã³÷íà ³ñòèíà ³ åìï³ðèçì. - Íîâîñèá³ðñüê: Íàóêà, 1974. Öåëèùåâ Â.Â. Ëîã³êà ³ñíóâàííÿ. - Íîâîñèá³ðñüê: Íàóêà, 1975. Öåëèùåâ Â.Â. Ìîâà äðóãîãî ïîðÿäêó ³ ïðîáëåìíî-îð³ºíòîâàíèé ï³äõ³ä äî ï³äñòàâ ìàòåìàòèêè - 1 / / Ô³ëîñîô³ÿ íàóêè. - 2001. - ¹ 1 (9). -Ñ. 76-90. Öåëèùåâ Â.Â. Ìàòåìàòèêà ³ ô³ëîñîô³ÿ: òåõí³÷í³ äåòàë³ òà ô³ëîñîôñüê³ ³íòåðïðåòàö³¿ II Ô³ëîñîô³ÿ íàóêè. - 2002. - ¹ 2 (13). - Ñ. 27-43. Öåëèùåâ Â.Â. Ïîøóêè íîâî¿ ô³ëîñîô³¿ ìàòåìàòèêè II Ô³ëîñîô³ÿ íàóêè. - 2002. - ¹ 3 (11). - Ñ. 135-147. Öåëèùåâ Â.Â., Áåçñîíîâ À.Â. Äâ³ ³íòåðïðåòàö³¿ ëîã³÷íèõ ñèñòåì. - Íîâîñèá³ðñüê: Íàóêà, 1979. Öåëèùåâ Â.Â. Ïåòðîâ Â.Â. Ô³ëîñîôñüê³ ïðîáëåìè ëîã³êè. - Ì.: Âèùà. øê., 1982. Aczel P. Non-Well-Founded Sets. - Stanford, 1988. Anderson D. What Is the Model-theoretic Argument? II J. Philosophy. - 1993. - Vol. 90, N 6. - P. 312-313. Anderson F. Some Correction to Godel's Ontological Proof / / Faith and Philosophy. - 1990. - Vol. 7, N 3, July. Azzouni J. Metaphysical Myths, Mathematical Practice. - Cambridge: University Press, 1994. Balaguer M. Platonism and Antiplatonism in Mathematics. - Oxford: University Press, 1998. Barrow J. Pi in the Sky. - Oxford: Clarendon Press, 1992. Bays T. On Putnam and His Models II J. Philosophy. - 2001. - Vol. 98, N7. Benacerraf P. What Numbers Could Not Be II Philos. Rev. - 1965. - Vol. 74, N 1. Benacerraf P. Mathematical Truth II J. Philosophy. - 1973. Benacerraf P. Skolem and Sceptic II Proceedings of Aristotelian Society. - 1985. - Suppl. vol. 59. Benacerraf P. What Mathematical Truth Could not Be II Philosophy of Mathematics Today. / Ed. M. Schirn. - Oxford, 1998. Bernays P. Platonism in Mathematics II Philosophy of Mathematics. / Ed. P. Benacerraf, H. Putnam. - Englewood Cliffs: Prentice-Hall, 1964. Beth E. Mathematical Thought. - Dordrecht: Reidel, 1965. Bishop E. Foundations of Constructive Analysis. -N.Y.: McGraw-Hill, 1967. Boolos G. The Iterative Conception of Set II J. Philosophy. - 1971. - Vol. 68. Boolos G. To Be Is to Be a Value of Variable II J. Philosophy. - 1975. - Vol. 72. - P. 509-527. Boolos G. On Second-Order Logic II J. Philosophy. - 1984. - Vol. 81. - P. 54-72. Boolos G. The consistency of Frege's Foundations of Arithmetic II On Being and Saying / Ed. J. Thompson. - Cambridge: University Press, 1987. Bostock D. On Motivating Higher-Order Logic ² Philosophical Logic. / Ed. T. Smiley. - Oxford: University Press, 1998. Cantor G. Gesammelte Abhandlungen / Ed. A. Fraenkel and E. Zermelo. - Berlin, 1932. Cantor G. Contributions to the Founding of the Theory of Transfinite Numbers. - N.Y.: Open Court, 1955. Chihara Ch. Constructibility and Mathematical Existence. - Oxford: University Press, 1990. Cohen P. Set Theory and the Continuum Hypothesis. - Benjamin; Massachusetts, 1966. Colyvan Ì. The Indispensability of Mathematics. - Oxford: University Press, 2001. Corcoran J. Gaps between Logical Theory and Mathematical practice II The Methodological Unity of Science / Ed. Curry H. Outlines of a Formalist Philosophy of Mathematics. - Amsterdam, 1970. Dauben J. George Cantor. - Princeton: University Press, 1979. Davis Ph., Hersh R. The Mathematical Experience. - Penguin, 1983. Douven I. Putnam's Model-Theoretic Argument Reconstrued II J. Philosophy. - 1999. - Vol. 96, N 9. -P. 483. Field H. Science without Numbers. - Princeton: University Press, 1980. Field H. Is Mathematical Knowledge Just Logical Knowledge? II Philos. Rev. - 1984. - Vol. 93, N 4. Field H. On Conservativeness and Incompleteness II J. Philosophy. - 1985. - Vol. 82. - P. 239-60. Fraenkel A., Bar-Hillel Y., Levi A. Foundations of Set Theory. - 2-nd ed. - Amsterdam, 1973. Fuller S. Thomas Kuhn: A Philosophical History for Our Times. - Chicago: University Press, 2001. George A. Skolem and Lewenheim - Skolem Theorem: A Case Study of Philosophical Significance of mathematical Results II History and Philosophy of Logic. - 1985. - N 6. Godel K. What is Cantor's Continuum Problem? II Philosophy of Mathematics / Ed. P. Benacerraf, H. Putnam. - Englewood Cliffs: Prentice-Hall, 1964. Goldman A.I. A Causal Theory of Knowledge II Essays on Knowledge and Justification / Ed. G. Pappas, M. Swain. - Cornell: University Press, 1978. Hacking I. The Social Construction of What? - Harvard: University Press, 1999. Hacking J. What Mathematics Has Done to Some and Only Some Philosophers / / Mathematics and Necessity / Ed. T. Smiley. -Oxford: University Press, 2000. Hale B. Abstract Objects. - Basil: Blackwell, 1987. Hale B. and Wright C. Putnam's Model-Theoretic Argument II Companion to Philosophy of Language. - Blackwell, 1997. Halett M. Cantorain Set Theory and Limitation of Size. - Oxford: University Press, 1984. - P. 32. Hart W.D. Review of Mathematical Knowledge by M. Steiner. - Ithaka: Cornell University Press, 1975 / / J. Philosophy. - 1977. - Vol. 74, N 2, febr. Hays J. The battle of the Frog and the Mouse (from the Fables of Aleph) II Mathematical Intelligencer. - 1984. - Vol. 6. Hersh R. Mathematics has a Front and a Back II Synthese 88, 1991. Hersh R. A Fresh Winds in the Philosophy of Mathematics II Amer. Math. Monthly. - 1995. - Aug.-Sept. - P. 590-591. Hersh R. What is Mathematics, Really? - Oxford: University Press, 1997. Higginbotham J. On High-Order Logic and Natural language II Philosophical Logic / Ed. T. Smiley. - Oxford: University Press, 1998. Hintikka J. Logic, Language Games and Information. - Oxford: Clarendon Press, 1973. Hintikka Ja. The Principles of Mathematics Revisited. - Cambridge: University Press, 1996. Hintikka Ja. Lingua Universalis vs Calculus Ratiocinator. - Dordrecht: Kluwer Academic Publishers, 1997. Jane I. A Critical Appraisal of Second-Order Logic ² History and Philosophy of Logic. - 1993. - Vol. 14. Kitcher Ph. The Nature of Mathematical Knowledge. - Oxford: University Press, 1983. Klenk V. Intended Models and Lewenheim-Skolem Theorem II J. Philos. Logic. - 1976. - N 5. - P. 475-489. Korner S. The philosophy of Mathematics. - L.: Hutchinson, 1960. Kreisel G. Der unheivolle Einbruch der Logic in die Mathematik II Acta Philosophica Fennica. - Vol. 28, N 1-3. Kripke S. Wittgenstein on Rules and Private Language. - N.Y.: Blackwell, 1982. Lavine Sh. Understanding the Infinite. - Cambridge: Harvard University Press, 1994. Maddy P. Believing Axioms. I / / J. Symbolic Logic. - 1988. - Vol. 53. Maddy P. Believing the Axioms. II / / J. Symbolic Logic. - 1988. - Vol. 53, N 3. - P. 736-764. Maddy P. Mathematical Realism II Midwest Studies in Philosophy. - 1988. - Vol. 12. - P. 275. Maddy P. Realism in Mathematics. - Oxford: University Press, 1990. Maddy P. Philosophy of Mathematics: Prospects for the 1990s II Synthese 88, - 1991. - P. 155-164. Maddy P. Naturalism in Mathematics. - Oxford: University Press, 1997. Martin D. Hilbert 's First Problem: The Continuum Hypothesis II Proceedings of Symposia in Pure mathematics. - 1976. - Vol. 28. Martin R. Intension and Decision. - N.Y., 1964. Moore G. Beyond First-Order Logic: The Historical Interplay between Mathematical Logic and Axiomatic Set Theory II History and Philosophy of Logic. Moore G. Zermelo's Axiom of Choice. - Springer, 1982. Moschovakis Y. Descriptive Set Theory. - Amsterdam: North Holland, 1980. Mostowski A. Thirty Years of Foundational Studies / / Acta Philosophica Fennica, Fasc. XVII. - Helsinki, 1965. Passmore J. Recent Philosophers. - N.Y.: Open Court, 1991. Penrose R. The Emperor's New Mind. - L.: Vintage, 1990. Philosophy of Mathematics / Eds. Benacerraf P., Putnam H. - Englewood Cliffs: Prentice-Hall, 1964. Philosophy of Mathematics Today I Ed. M. Schirn. - Oxford, 1998. Putnam H. Review of the Concept of a Person II Philosophical Papers. Mind, Language and Reality. - Cambridge: University Press, 1975. - Vol. 2. Putnam H. Models and Reality ² J. Symbolic Logic. - 1980. - Vol. 45, N 3. Putnam H. Reason, Truth, and History. - Cambridge, 1982. Quine W.V.O. Set Theory and Its Logic. - Harvard: University Press, 1963. Quine W. V.O. Word and Object. - Cambridge: University Press, 1964. Quine W.V.O. Epistemology Naturalized II Ontological Relativity and Other Essays. - Harvard: University Press, 1969. Quine W.V.O. Philosophy of Logic. - Englewood Cliffs: Prentice-Hall, 1970. Reed S. Thinking about logic. - Oxford: University Press, 1994. Resnik M. Mathematics as a Science of Patterns. - Oxford: Clarendon Press, 1997. Rota G.-C. Mathematics and Philosophy: The Story of Misunderstanding ² Review of Metaphysics. - 1990. - Vol. 44, N 174, Dec. Rota G.-C. The Pernicious Influence of Mathematics upon Philosophy II Synthese 88, - 1991, - P. 165-178. Rucker R. Infinity and the Mind. - Bantam Books, 1983. Russell B. Principles of Mathematics. - N.Y., 1903. Russell B. Mathematics and Metaphysicians II Mysticism and Logic, 1957. Russell B. On Some Difficulties in the Theory of Transfinite Numbers and Order Types II Essays in Analysis / Ed. D. Lackey.-N.Y., 1974.-P. 153. Scott D. Foreword to J. Bell, Bolean-Valued Models and Independence Proofs in Set Theory. - Oxford: University Press, 1977. - P. xii. Shapiro S. Mathematics and Reality II Philosophy of Science. - 1983. - Vol. 50. - P. 523-548. Shapiro S. Second-order Logic, Foundations, and Rules II J. Philosophy. - 1990. Shapiro S. Foundations without Foundationalism: A Case for Second-order Logic. - Oxford: University Press, 1991. Shapiro S. Mathematics and Philosophy of Mathematics II Phiiosophia Mathematica. - 1994. - Vol. 2, N 3. Shapiro S. Philosophy of Mathematics. Structure and Ontology. - Oxford: University Press, 1997. Skolem T. Einige Bemerkungen zur aximatischen Begrundung der Mengelehre / / From Frege to Godel / Ed. van Heijenoort. - Cambridge, 1967. Skolem T. Some Remarks on Axiomatized Set Theory ² From Frege to Godel / Heijenoort J., van. - Harvard: University Press, 1967. Skolem T. Sur la Portee du Theoreme de Lewenheim - Skolem II Skolem T. Selected Works in Logic / Ed. E.J. Fenstad. - Universitetsforlaget, 1970. - P. 468. Sluga H. Frege Against Booleans II Notre Dame Journal of Formal Logic. - 1987. - Vol. 28. - P. 80-98. Takeuti G. Two Applications of Logic to Mathematics. - Princeton: University Press, 1977. Tappenden J. Recent Works in Philosophy of Mathematics II J. Philosophy. - 2001. - Vol. 97. - P. 488-497. Tarski A. Remarks on Skolem II Skolem T. Selected Works in Logic. - Oslo, 1970. > Tiles M. The Philosophy of Set Theory: An Historical Introduction to Cantorb Paradise. - Basil: Blackwell, 1989. '> Velleman D. Letter of 28 March 1991. Internet FOM. Wang Hao. From Mathematics to Philosophy. - L., 1974. - s Whitehead A.N. Principia Mathematica. - Cambridge: University Press, 1910. 1 Wright C. Frege's Conception of Numbers as Objects. - Aberdeen: University Press, 1983. t Wright C. Skolem and Sceptic II Proceedings of Aristotelian Society. - 1985. -Suppl. vol. 59. Zermelo E. Investigations in the Foundations of Set Theory. 1908 / / Front Frege to Godel / Ed. van Heijenort J. - Harvard: "University Press, 1967: ' |
||
« Ïîïåðåäíÿ | ||
|
||
²íôîðìàö³ÿ, ðåëåâàíòíà "˲ÒÅÐÀÒÓÐÀ" |
||
|