Головна
Аксіологія / Аналітична філософія / Антична філософія / Антологія / Антропологія / Історія філософії / Історія філософії / Логіка / Метафізика / Світова філософія / Першоджерела з філософії / Проблеми філософії / Сучасна філософія / Соціальна філософія / Середньовічна філософія / Телеологія / Теорія еволюції / Філософія (підручник) / Філософія мистецтва / Філософія історії / Філософія кіно / Філософія науки / Філософія політики / Філософія різних країн і часів / Філософія самоорганізації / Філософи / Фундаментальна філософія / Хрестоматії з філософії / Езотерика
ГоловнаФілософіяЛогіка → 
« Попередня Наступна »
А. АРНО, П. НИКОЛЬ. Логіка, або Мистецтво мислити / М.: Наука. - 417 с. - (Пам'ятки філософській думці)., 1991 - перейти до змісту підручника

Глава VI ПРАВИЛА, модус І ЗАСНУВАННЯ ДРУГИЙ ФІГУРИ

Друга фігура - та, в якій середній термін двічі служить атрибутом. А звідси випливає, що для того, щоб вона укладала з необхідністю, потрібно дотримуватися наступні два правила.

Правило перше

Треба, щоб одне з двох перших пропозицій було негативним і, отже, щоб висновок також було негативним, по 6-му загальним правилом.

Якби вони обидва були стверджувальними, то середній термін, який завжди є атрибутом, був би двічі узятий як приватний, що суперечило б 1-му загальним правилом.

Правило друге

Треба, щоб велика посилка була спільною «

Бо в силу того, що укладення негативне, більший термін, або атрибут, береться як загальний. Але цей же термін служить суб'єктом більшої посилки. Отже, він повинен бути загальним, а значить, загальною повинна бути і велика посилка.

Доказ того, що у другої фігури може бути тільки чотири модусу

З десяти заключающих модусів чотири стверджувальних виключаються по 1-му правилу цієї фігури, згідно з яким одна з посилок повинна бути негативною.

ОАО виключається по 2-м правилом, згідно з яким болвше посилка має бути спільною.

ЄАО виключається з тієї ж причини, що і в першій фігурі, тому що в другій фігурі менший термін також є меншою посилці суб'єктом.

Отже, з десяти модусів залишається тільки чотири наступних:

2 заг [їх] {ЕАЕ 2 част [них] | НЕЮ

Що і потрібно було довести.

Ці чотири модусу позначили наступними штучними словами:

СЕ-Жоден брехун не заслуговує довіри.

SA-Всякий добропорядна людина заслуговує довіри.

RE. Отже, жоден добропорядний людина не брехун.

СА-Всі ті, що Христові, розпинають свою плоть 17.

MES-Всі ті, хто проводить життя в млості і хтивості, що не розпинають своєї плоті.

TRES. Отже, жоден з них не Христовий.

FES-Жодна доброчесність не противна любові до істини.

ТІ-Існує любов до спокою, противна любові до істини.

N0. Отже, існує любов до спокою, яка пе є чеснотою.

ВА-Всякой чесноти супроводжує скромність,

R0-Буває завзяття без скромності.

СО. Отже, буває завзяття, яке не є чеснотою,

Підстава другої фігури

Неважко було б манівцями звести всі ці різні види доказів до одного і того ж принципу; по корисніше звести два з них до одного принципу і два - до іншого, так як залежність їх від цих принципів і зв'язок з ними більш ясна і-більш безпосередня.

1. Принцип доказів по Cesare і Festino

Перший з цих принципів - той, який служить підставою також і для негативних доказів першої фігури, а саме: Те, що заперечується щодо загальної ідеї, заперечується також щодо всього того, про що ця ідея стверджується, тобто відносно всіх суб'єктів цієї ідеї. Бо очевидно, що докази по Cesare і Festino засновані на цьому принципі. Щоб показати, наприклад, що ііі один добропорядний людина не брехун, я стверджував атрибут «заслуговує довіри» щодо всякого добропорядної людини і заперечував атрибут «брехун» щодо всякого людини, заслуговує на довіру, кажучи, що жоден брехун не заслуговує довіри. Правда, цей спосіб заперечення є непрямим, оскільки замість того, щоб заперечувати атрибут «брехун» щодо людини, заслуговує на довіру, я заперечував атрибут «заслуговує довіри» щодо брехуна. Але так як общеотріцательние пропозиції звертаються просто, то, заперечуючи атрибут щодо загального суб'єкта, цей загальний суб'єкт заперечують щодо атрибута.

Це показує, однак, що докази по Cesare є в деякому сенсі непрямими, оскільки те, що надолужити заперечувати, заперечується в них лише побічно.

Але раз це не заважає розуму без жодної напруги ясно попімать силу доказу, їх можна вважати прямими, розуміючи під цим словом докази ясні і природні.

Це показує також, що розглянуті два модуси -? Cesare і Festino відрізняються від двох модусів першої фігури Celarent і Ferio тільки тим, що велика посилка в Піх перевернута. Але хоча можна сказати, що негативні модуси першої фігури в більшій мірі є прямими, однак відповідні їм два мо-Дуса другої фігури часто більш природні і розум більш схильний саме до них. Наприклад, у наведеному вище умовиводі, дотримуючись прямого порядку заперечення, слід було б сказати: «Жодна людина, що заслуговує довіри, пе брехун», що утворило б доказ у Celarent, однак для нашого розуму природніше виражати це так: «Жоден брехун не заслуговує довіри ».

[2.J Принцип доказів по Camestres і Вагос

У цих двох модусах середній термін затверджується щодо атрибута укладення та заперечується стосовно суб'єкта, з чого видно, що вони засновані на принципі: Все, що міститься в обсязі загальної ідеіу не підходить до жодного з суб'єктів, щодо яких вона заперечується, оскільки атрибут негативного пропозиції береться в усьому своєму обсязі, як це доведено у другій частині.

«Істинний християнин» міститься в обсязі «милосердного», бо кожен справжній християнин милосердний; «милосердний» заперечується стосовно безжального до бідних. Отже, «істинний християнин» заперечується стосовно безжального до бідних. Це становить такий доказ:

Всякий справжній християнин милосердний.

Жодна людина, безжалісний до бідних, які не милосердний.

Отже, жодна людина, безоюалостний до бідних, не є справжнім християнином.

« Попередня Наступна »
= Перейти до змісту підручника =
Інформація, релевантна " Глава VI ПРАВИЛА, модус І ЗАСНУВАННЯ ДРУГИЙ ФІГУРИ "
  1. Правильні (сильні) модуси
    другої фігури: АЕЕ, АОО, ЕАЕ, НЕЮ. Модуси третьої фігури: АН, ВАТ, IAI, ЄАО, НЕЮ, AAI. Модуси четвертої фігури: AAI, IAI, ЄАО, НЕЮ,
  2. Глава VII ПРАВИЛА, модус І ЗАСНУВАННЯ ТРЕТЬОЇ ФІГУРИ
    модусів З десяти заключающих модусів Леї і А00 виключаються по 1 -м правилом цієї фігури, згідно з яким менша посилка не може бути негативною. AAA і ЕАЕ виключаються але 2-му правилу, згідно з яким ув'язнення в ній не може бути загальним. Отже, залишається тільки шість наступних модусів: ЛЛІ Гело 3 затв [ердітельних] АН 3 отр
  3. Фігури і модуси простого категоричного силогізму
    правила, хоча ці правила можуть бути отримані строго логічно, як наслідку із загальних правил простого категоричного силогізму. I. Перша фігура характеризується тим, що середній термін (М) грає в ній роль суб'єкта в більшому і предиката у меншому посилці. Перша фігура простого категоричного силогізму використовується в процесі пізнання як спосіб поширення деякого загального знання,
  4. Завдання 34: Розділово-категоричне умовивід. Зробіть висновок. Запишіть формулу, визначте модус і характер виводу.
    Модус; ((АУВ) л-В) ^-А - заперечливо-який стверджує модус. Правила РКУ: У утверждающе-отрицающем модусі диз'юнкція має бути строгою. Якщо диз'юнкція нестрогая в утверждающе-отрицающем модусі, тоді висновок був би можливим: «Він страждає від хвороби або бідності. Він хворий. Ймовірно, він не бідний ». У отри-цающе-стверджуючому модусі в розділовій посилці повинні бути перераховані всі альтернативи.
  5. Запитання для повторення
    правила логіки судження
  6. Глава VIII Про модус ЧЕТВЕРТОЇ ФІГУРИ
    правила немає необхідності. Але ми їх все ж наведемо, щоб показати всі прості способи умовиводи. Правило перше Коли велика посилка стверджувальна, менша завжди спільна. Бо середній терміп в позитивної більшій посилці береться як приватний, тому що він служить в ній атрибутом. Отже, треба, щоб він був узятий як загальний меншою посилці (по 1-му загальним правилом), і,
  7. ГЛАВА ТРЕТЯ [Справжні укладення з помилкових або змішаних посилок по другій фігурі]
    фігурі з помилкових посилок можна виводити істинні укладення у всіх випадках - і коли обидві посилки взяті цілком
  8. Завдання 35: Використовуючи розділову посилку, побудуйте розділової-категоричне умовивід: а) по утверждающе -отрицающему модусу, б) по отріцающе-стверджує модусу. Визначте характер виводу (достовірний або ймовірний).
    Правила
  9. Глава тридцятих * В
    другій фігурі. - 190. 2 ср «Про софістичних спростування", 173 b 40; 182 а 18. - 190. 1 Analyein вживається Аристотелем у двох значеннях: а. У значенні (як в даному місці) аналізу міркувань. Назва «Аналітики» відповідає цьому значенню, б. У значенні своденія одних силогізмів до інших (див., наприклад, 47 а 2 - 5). - 191. 2 Звуження присудка вимагає
  10. 2. Умовно-категоричний силогізм
    модусу: що затверджує (modus ponens) і заперечує (modus tollens). У стверджуючому модусі (modus ponens) в категоричній посилці затверджується істинність антецедента умовної посилки, а у висновку - істинність консеквента. В даному випадку міркування направлено від затвердження істинності підстави до утвердження істинності слідства. Схема який стверджує модусу (modus ponens). А ^ В А В Наприклад: Для
  11. Глава шоста 1
    модуси першої фігури із загальними висновками, тобто Barbara і Celarent. Вимогу же совершенности в нестрогому сенсі задовольняють інші правильні модуси першої фігури, і лише вони. - 134. 7 Бо вони досконалі, хоча і в нестрогому сенсі (див. прим. 6). - 134. 8 Darii зводиться до Camestres. - 134. 9 Ferio зводиться до Cesare. - 134. 10 Для цього достатньо в докази Darii
  12. Глава V ПРАВИЛА, модус І ЗАСНУВАННЯ ПЕРШОЇ ФІГУРИ
    правила. Правило перше Треба, щоб менша посилка була ствердною. Якби вона була негативною, то велика посилка була б, по 3-му загальним правилом, стверджувальній, а висновок, по 5-му, - негативним. Отже, більший термін був би взятий як загальний в ув'язненні, тому що воно було б негативним, і як приватний - більшою посилці, тому що в першій фігурі він служить
  13. Глава десята 1
    модусу аа другої фігури. - 279. 3 Літературний персонаж. Аристотель, по всій ймовірності, має на увазі свого сучасника - комічного поета апа - 279. А саме коли бблипая посилка оборотна. - 279. 6 Істинність (хибність) укладення при істинності (хибності) посилок. - 279. ° [(А В) і В1 А, де «А» і «В», очевидно, пропозіціональние літери. 279. Глава тринадцята 1